2,031 research outputs found

    Sensitivity of galaxy cluster dark energy constraints to halo modeling uncertainties

    Full text link
    We perform a sensitivity study of dark energy constraints from galaxy cluster surveys to uncertainties in the halo mass function, bias and the mass-observable relation. For a set of idealized surveys, we evaluate cosmological constraints as priors on sixteen nuisance parameters in the halo modeling are varied. We find that surveys with a higher mass limit are more sensitive to mass-observable uncertainties while surveys with low mass limits that probe more of the mass function shape and evolution are more sensitive to mass function errors. We examine the correlations among nuisance and cosmological parameters. Mass function parameters are strongly positively (negatively) correlated with Omega_DE (w). For the mass-observable parameters, Omega_DE is most sensitive to the normalization and its redshift evolution while w is more sensitive to redshift evolution in the variance. While survey performance is limited mainly by mass-observable uncertainties, the current level of mass function error is responsible for up to a factor of two degradation in ideal cosmological constraints. For surveys that probe to low masses (10^13.5 h^-1 M_sun), even percent-level constraints on model nuisance parameters result in a degradation of ~ sqrt{2} (2) on Omega_DE (w) relative to perfect knowledge.Comment: 13 pages, 5 figures, accepted by PR

    Velocity bias in a LCDM model

    Get PDF
    We use N-body simulations to study the velocity bias of dark matter halos, the difference in the velocity fields of dark matter and halos, in a flat low- density LCDM model. The high force, 2kpc/h, and mass, 10^9Msun/h, resolution allows dark matter halos to survive in very dense environments of groups and clusters making it possible to use halos as galaxy tracers. We find that the velocity bias pvb measured as a ratio of pairwise velocities of the halos to that of the dark matter evolves with time and depends on scale. At high redshifts (z ~5) halos move generally faster than the dark matter almost on all scales: pvb(r)~1.2, r>0.5Mpc/h. At later moments the bias decreases and gets below unity on scales less than r=5Mpc/h: pvb(r)~(0.6-0.8) at z=0. We find that the evolution of the pairwise velocity bias follows and probably is defined by the spatial antibias of the dark matter halos at small scales. One-point velocity bias b_v, defined as the ratio of the rms velocities of halos and dark matter, provides a more direct measure of the difference in velocities because it is less sensitive to the spatial bias. We analyze b_v in clusters of galaxies and find that halos are ``hotter'' than the dark matter: b_v=(1.2-1.3) for r=(0.2-0.8)r_vir, where r_vir is the virial radius. At larger radii, b_v decreases and approaches unity at r=(1-2)r_vir. We argue that dynamical friction may be responsible for this small positive velocity bias b_v>1 found in the central parts of clusters. We do not find significant difference in the velocity anisotropy of halos and the dark matter. The dark matter the velocity anisotropy can be approximated as beta(x)=0.15 +2x/(x^2+4), where x is measured in units of the virial radius.Comment: 13 pages, Latex, AASTeXv5 and natbi

    GALAXY DYNAMICS IN CLUSTERS

    Full text link
    We use high resolution simulations to study the formation and distribution of galaxies within a cluster which forms hierarchically. We follow both dark matter and baryonic gas which is subject to thermal pressure, shocks and radiative cooling. Galaxy formation is identified with the dissipative collapse of the gas into cold, compact knots. We examine two extreme representations of galaxies during subsequent cluster evolution --- one purely gaseous and the other purely stellar. The results are quite sensitive to this choice. Gas-galaxies merge efficiently with a dominant central object while star-galaxies merge less frequently. Thus, simulations in which galaxies remain gaseous appear to suffer an ``overmerging'' problem, but this problem is much less severe if the gas is allowed to turn into stars. We compare the kinematics of the galaxy population in these two representations to that of dark halos and of the underlying dark matter distribution. Galaxies in the stellar representation are positively biased (\ie over-represented in the cluster) both by number and by mass fraction. Both representations predict the galaxies to be more centrally concentrated than the dark matter, whereas the dark halo population is more extended. A modest velocity bias also exists in both representations, with the largest effect, σgal/σDM0.7\sigma_{gal}/\sigma_{DM} \simeq 0.7, found for the more massive star-galaxies. Phase diagrams show that the galaxy population has a substantial net inflow in the gas representation, while in the stellar case it is roughly in hydrostatic equilibrium. Virial mass estimators can underestimate the true cluster mass by up to a factor of 5. The discrepancy is largest if only the most massive galaxies are used, reflecting significant mass segregation.Comment: 30 pages, self-unpacking (via uufiles) postscript file without figures. Eighteen figures (and slick color version of figure 3) and entire paper available at ftp://oahu.physics.lsa.umich.edu/groups/astro/fews Total size of paper with figures is ~9.0 Mb uncompressed. Submitted to Ap.J

    BOOMERanG Data Suggest a Purely Baryonic Universe

    Get PDF
    The amplitudes of peaks in the angular power spectrum of anisotropies in the microwave background radiation depend on the mass content of the universe. The second peak should be prominent when cold dark matter is dominant, but is depressed when baryons dominate. Recent microwave background data are consistent with a purely baryonic universe with Omega(matter) = Omega(baryon) ~ 0.03 and Omega(Lambda) ~ 1.Comment: 10 pages AASTeX with 1 color postscript figure. Accepted for publication in ApJ Letters. And yes, the prediction was in the literature before the dat

    Galaxy Cluster Mass Estimation from Stacked Spectroscopic Analysis

    Full text link
    We use simulated galaxy surveys to study: i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and ii) the accuracy of a mean dynamical cluster mass, Mσ(λ)M_\sigma(\lambda), derived from stacked pairwise spectroscopy of clusters with richness λ\lambda. Using  ⁣130,000\sim\! 130,000 galaxy pairs patterned after the SDSS redMaPPer cluster sample study of Rozo et al. (2015 RMIV), we show that the pairwise velocity PDF of central--satellite pairs with mi<19m_i < 19 in the simulation matches the form seen in RMIV. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes 60%\sim 60\% of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. (2008) to the velocity normalization matches, to within a few percent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with mis-centering and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z=0.2z=0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al. (2015), we find ln(M200c)λ=ln(M30)+αmln(λ/30)\langle \ln(M_{200c})|\lambda \rangle = \ln(M_{30}) + \alpha_m \ln(\lambda/30) with M30=1.56±0.35×1014MM_{30} = 1.56 \pm 0.35 \times 10^{14} M_\odot and αm=1.31±0.06stat±0.13sys\alpha_m = 1.31 \pm 0.06_{stat} \pm 0.13_{sys}. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.Comment: 14 pages, 7 figure

    Gravitational Lensing as a Probe of Quintessence

    Full text link
    A large number of cosmological studies now suggest that roughly two-thirds of the critical energy density of the Universe exists in a component with negative pressure. If the equation of state of such an energy component varies with time, it should in principle be possible to identify such a variation using cosmological probes over a wide range in redshift. Proper detection of any time variation, however, requires cosmological probes beyond the currently studied range in redshift of \sim 0.1 to 1. We extend our analysis to gravitational lensing statistics at high redshift and suggest that a reliable sample of lensed sources, out to a redshift of \sim 5, can be used to constrain the variation of the equation of state, provided that both the redshift distribution of lensed sources and the selection function involved with the lensed source discovery process are known. An exciting opportunity to catalog an adequate sample of lensed sources (quasars) to probe quintessence is now available with the ongoing Sloan Digital Sky Survey. Writing w(z)w0+z(dw/dz)0w(z)\approx w_0 + z (dw/dz)_0, we study the expected accuracy to which the equation of state today w0w_0 and its rate of change (dw/dz)0(dw/dz)_0 can simultaneously be constrained. Such a determination can rule out some missing-energy candidates, such as classes of quintessence models or a cosmological constant.Comment: Accepted for publication in ApJ Letters (4 pages, including 4 figures

    Integral closure of rings of integer-valued polynomials on algebras

    Full text link
    Let DD be an integrally closed domain with quotient field KK. Let AA be a torsion-free DD-algebra that is finitely generated as a DD-module. For every aa in AA we consider its minimal polynomial μa(X)D[X]\mu_a(X)\in D[X], i.e. the monic polynomial of least degree such that μa(a)=0\mu_a(a)=0. The ring IntK(A){\rm Int}_K(A) consists of polynomials in K[X]K[X] that send elements of AA back to AA under evaluation. If DD has finite residue rings, we show that the integral closure of IntK(A){\rm Int}_K(A) is the ring of polynomials in K[X]K[X] which map the roots in an algebraic closure of KK of all the μa(X)\mu_a(X), aAa\in A, into elements that are integral over DD. The result is obtained by identifying AA with a DD-subalgebra of the matrix algebra Mn(K)M_n(K) for some nn and then considering polynomials which map a matrix to a matrix integral over DD. We also obtain information about polynomially dense subsets of these rings of polynomials.Comment: Keywords: Integer-valued polynomial, matrix, triangular matrix, integral closure, pullback, polynomially dense set. accepted for publication in the volume "Commutative rings, integer-valued polynomials and polynomial functions", M. Fontana, S. Frisch and S. Glaz (editors), Springer 201

    Optimizing Observational Strategy for Future Fgas Constraints

    Full text link
    The Planck cluster catalog is expected to contain of order a thousand galaxy clusters, both newly discovered and previously known, detected through the Sunyaev-Zeldovich effect over the redshift range 0 < z < 1. Follow-up X-ray observations of a dynamically relaxed sub-sample of newly discovered Planck clusters will improve constraints on the dark energy equation-of-state found through measurement of the cluster gas mass fraction fgas. In view of follow-up campaigns with XMM-Newton and Chandra, we determine the optimal redshift distribution of a cluster sample to most tightly constrain the dark energy equation of state. The distribution is non-trivial even for the standard w0-wa parameterization. We then determine how much the combination of expected data from the Planck satellite and fgas data will be able to constrain the dark energy equation-of-state. Our analysis employs a Markov Chain Monte Carlo method as well as a Fisher Matrix analysis. We find that these upcoming data will be able to improve the figure-of-merit by at least a factor two.Comment: 11 pages, 8 figure

    Group-cluster merging and the formation of starburst galaxies

    Get PDF
    A significant fraction of clusters of galaxies are observed to have substructure, which implies that merging between clusters and subclusters is a rather common physical process of cluster formation. It still remains unclear how cluster merging affects the evolution of cluster member galaxies. We report the results of numerical simulations, which show the dynamical evolution of a gas-rich late-type spiral in a merger between a small group of galaxies and a cluster. The simulations demonstrate that time-dependent tidal gravitational field of the merging excites non-axisymmetric structure of the galaxy, subsequently drives efficient transfer of gas to the central region, and finally triggers a secondary starburst. This result provides not only a new mechanism of starbursts but also a close physical relationship between the emergence of starburst galaxies and the formation of substructure in clusters. We accordingly interpret post-starburst galaxies located near substructure of the Coma cluster as one observational example indicating the global tidal effects of group-cluster merging. Our numerical results furthermore suggest a causal link between the observed excess of blue galaxies in distant clusters and cluster virialization process through hierarchical merging of subclusters.Comment: 5 pages 3 color figures, ApJL in pres
    corecore